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Abstract

When presented with a yes-no question, humans tend to say
‘yes’ regardless of the ground truth. This ‘yes-bias’ can be
attributed either to the social pressure to agree with an inter-
locutor or simply to the tendency to mimic the distribution of
the input data. Here, we estimate ‘yes-no’ response bias in
language models (LMs), with the goal of distinguishing the
two theories, and explore two strategies for bias correction.
We develop two yes-no question datasets derived from existing
world knowledge datasets, and test 16 open-weight LMs. We
find that LMs often show response bias on yes-no questions,
but that it is highly variable, deviating from bias observed in
humans. We further present a novel bias correction method,
which eliminates bias and improves model performance. Ev-
idence of non-humanlike response bias in LMs informs us on
the source of yes-bias in humans, and the efficacy of our bias

correction method holds promise for LM evaluation. !

Keywords: language models; question-answering; bias cor-
rection

Introduction

Bias has been a long-standing area of investigation in cog-
nitive science, and has experienced a recent influx of ana-
Iytical paradigms with the rise of machine learning research.
Response bias, in particular, is a topic of interest shared by
both cognitive scientists (Fazio & Olson, 2003; McGrath,
Mitchell, Kim, & Hough, 2010; Paulhus, 1991) and ML sci-
entists (Dai et al., 2024; Zou, Mubin, Alnajjar, & Ali, 2024,
among others). If an agent (human or model) answers a ques-
tion or responds to a survey under the influence of systematic
bias, it can lead to a false assessment of the agent’s underlying
knowledge and capabilities. Thus, for both humans and mod-
els, ensuring that a response to a question is a fair represen-
tation of the underlying judgment requires the identification,
measurement, and correction of response biases.

One of the simplest types of questions presented in
question-answering tasks are binary choice, yes-no questions.
Decades of human behavioral research have shown evidence
of an acquiescence bias (henceforth ‘yes-bias’). In adults,
yes-bias is most commonly studied in self-reported person-
ality tests, where it holds major implications for personality
research (Danner, Aichholzer, & Rammstedt, 2015), market-
ing research (Steinmetz & Posten, 2020), and possibly even
measuring political efficacy (Wright, 1975). In children, yes-
bias has not only been established (Peterson, Dowden, & To-
bin, 1999), but further research has revealed its presence with
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varying ages, cultures, and languages (Heather Fritzley &
Lee, 2003; Mehrani & Peterson, 2017; Okanda & Itakura,
2008).

The most common explanation for yes-bias is a social one:
saying ‘yes’ has been historically attributed to the garnering
of social desirability (Furnham, 1986; van de Mortel, 2008;
Randall & Fernandes, 1991), and secondarily as a pressure
of authoritarianism in various scenarios (Bass, 1955; Fox,
Payne, Priest, & Philliber, 1977). It may also simply be a
product of avoiding social confrontation. However, another
possible explanation is a distributional one: children, and pos-
sibly even adults, might be saying ‘yes’ more often because
it is a more common distributional pattern in their language
input, causing it to become a default response.

We can test the distributional hypothesis of yes-bias origin
by examining bias for either ‘yes’ or ‘no’ (henceforth ‘yes-
no bias’) in language models (LMs). Existing studies show
some evidence of response biases in large LMs (LLMs), but
work surrounding acquiescence is both scarce and conflict-
ing: (Tjuatja, Chen, Wu, Talwalkwar, & Neubig, 2024) show
slight acquiescence in LLMs with heavily suggestive ques-
tion re-wording, indicating a lack of inherent yes-bias, while
(Schoenegger, Tuminauskaite, Park, Bastos, & Tetlock, 2024)
establish yes-bias using LLM ensemble predictions. (Salecha
et al., 2024) show evidence of human-like social desirabil-
ity in LLMs without traceability to acquiescence. Thus, the
evidence and nature of yes-bias in LMs is inconclusive, and
more work is needed on both the investigative front to provide
bias measurement/correction methods, as well as the evalua-
tive front to provide high-quality benchmarking datasets.

It is also important to characterize LM bias on yes-no ques-
tions to be able to accurately evaluate their capabilities. Sim-
ilar to how task demands might overwhelm smaller models
and hinder successful task performance (Hu & Frank, 2024),
response biases might mask underlying LLM knowledge. If
such bias exists and is successfully corrected, LMs may show
better performance on diverse tasks and thus serve as better
cognitive models of language-based learning. Currently, the
question of whether a bias towards yes-no questions exists in
LMs remains open, as well as the prospect to correct for it.

This paper aims to answer the following questions: (1)
whether a systematic yes-no bias exists in LMs, (2) if so,
whether it can be corrected at the token distributional level
(specifically via LogProbs manipulation), and (3) how the



corrections affect model accuracy. To do so, we convert two
pre-existing world knowledge datasets into yes-no question
format and measure the yes-no bias in LMs across four model
families. We then measure the efficacy of two bias correc-
tion methods, one being model-inherent (‘Generic’) and the
other being dataset-specific (‘Specific’). Our results suggest
that models do exhibit response bias, although their behavior
does not generalize to a consistent yes-bias. We show that the
model biases are dependent on a number of factors, but can
be effectively corrected using the dataset-specific approach,
which holds theoretical parallels to human-based bias mitiga-
tion methods.

Methods
Datasets

We adapt two world-knowledge datasets, COMPS (Misra,
Rayz, & Ettinger, 2023) and EWoK (Ivanova et al., 2024),
and convert them into two yes-no question datasets, COMPS-
YNQ and EWoK-YNQ (YNQ — “Yes-No Questions’). Our
goal was to leverage datasets that are cognitively motivated,
simple, and class-balanced (equal number of Yes and No gold
label responses).

COMPS-YNQ COMPS consists of ‘properties’ (e.g.,
basks in the sun) and ‘concepts’ (e.g., iguana,
trolley, etc.) that construct minimal pair sentences
({an iguana / A trolley} basks in the sun.). The
minimal pairing allows for systematic conversion into yes-no
questions  (Does {an iguana / a trolley} bask in
the sun?). This data set is intended primarily to test the
model’s ability to attribute properties to concepts based
on observed experience, i.e., the retrieval of its pre-trained
knowledge. We specifically chose the subset of negative
concepts generated via ‘random’ sampling from the original
dataset to construct COMPS-YNQ, since models reported
the highest distinguishing capability between positive and
‘random’ negative concepts on average (Misra et al., 2023).
The dataset contains a total of 7,184 questions, of which we
randomly sampled 2,100 questions (ensuring class balance).

EWoK-YNQ EWoK introduces contextual plausibility as
an additional factor affecting the concept-property matching
process (Sinha et al., 2022). The original dataset contrasts
opposing concepts (e.g., help, hinder) as minimal pairs of
‘target’ sentences (e.g., Chao is {helping / hindering}
Yan), and the models are tested on their ability to match
target sentences with corresponding pairs of ‘context’
sentences (e.g., Chao is making Yan’s job {easier /
harder}.). We convert the target sentences into yes-no
questions and append them to the context sentences (Chao
is making Yan’s job {easier / harder}. Is Chao

{helping / hindering} Yan?). EWoK-YNQ consists of
2,056 context-question input sequences across 11 domains
(social interactions, physical relations, agent properties,
etc.). Each question is fully answerable based on the single-
sentence context, and the model must not only remember the

immediate context association, but also judge its plausibility
based on pre-training knowledge to answer the question
correctly.

Models

We selected 16 total LMs for evaluation on COMPS-YNQ
and EWoK-YNQ. The LM test set consists of four model
families: Falcon (Almazrouei et al., 2023), Qwen (Bai et al.,
2023), MPT (Team, 2023), and OLMo (OLMo et al., 2024).
Each model family contains four LMs, each intended to test
different variations of the shared architectural design in order
to study generalized model trends. Importantly, the four indi-
vidual models in each family are selected such that they can
be divided into pairs of the same parameter count (e.g. pairs
of 7B/13B sized models for OLMo or 10B/7B for Falcon),
and the two models within a pair represent a base (henceforth
‘non-instruction tuned’) version and an instruction-tuned (ei-
ther ‘Instruct’ or ‘Chat’) version of that model. Therefore, for
instance, the two pairs that comprise the Qwen model family
are { (Qwenl.5-7B, Qwenl.5-7B-Chat), (Qwenl.5-14B,
Qwenl.5-14B-Chat) }. A similar logic is applied for model
selection among the other model families.

This methodology for model selection allows us to study
the effects of intruction-tuning on model accuracy and bias
for multiple model sizes, as well as how instruction-tuning
generally interacts with the described bias correction methods
across different LM architectures.

Evaluation setup

We evaluate LMs using two types of setups: a zero-shot, no-
prompting setup, where only the test item is presented, and a
few-shot prompting setup, which provides a one-line task in-
struction (Answer the following yes-no questions:),
labels the questions and responses, and includes two exam-
ples (one question each using YES and NO answers respec-
tively) created as per the format of the dataset. The motiva-
tion here is to test the efficacy of bias correction with vary-
ing task/context complexity. While LLMs generally benefit
from few-shot prompting (Brown et al., 2020), the higher task
demand is shown to be problematic for smaller LMs (Hu &
Frank, 2024).

We use LogProbs to derive per-question LM responses,
which is calculated as the sum of log probabilities for a cer-
tain token, conditioned on the preceding sentence tokens.
Specifically, we compare the total LogProbs scores for YES
responses (_Yes and Yes) tokens vs. the total LogProbs scores
for NO responses (_No and No). An aggregated probability
for YES and NO is calculated using log-sum-exp. The re-
sponse category with the highest aggregated LogProbs value
is recorded as the model’s final decision for the question.
Thus, we restrict the space of possible model responses while
accounting for some token-level variance. This response
derivation method is referred to as ‘base inference’, and the
two described bias correction strategies build on top of this
method.
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Figure 1: Heatmaps showing per-model bias values for all three procedures (Base, Generic, Specific) using zero-shot (a) and
few-shot (b) prompts. Positive and negative values indicate yes-bias and no-bias respectively.

Bias Estimation
We define yes-no response bias as:

#YES-responses — #NO-responses

Bias = #Questions

On class-balanced datasets (where the expected number of
yes and no responses is equal), this metric yields a normal-
ized bias score ranging from —1.0 (pure NO-response behav-
ior, i.e., ‘no-bias’) to +1.0 (pure YES-response behavior, i.e.,
‘yes-bias’). This metric is consistent with yes-bias estimation
in humans (Heather Fritzley & Lee, 2003; Okanda & Itakura,
2008).

Bias Correction Strategies

Method 1: Generic. This correction strategy targets the
models’ inherent response bias, i.e., the tendency to gener-
ally prefer one response over the other, regardless of the con-
text. Such bias may emerge as a function of the pre-training
process, where the model learns to place higher probabil-
ity on tokens that were more prevalent in the training data,
dubbed ‘common token bias’ in (Zhao, Wallace, Feng, Klein,
& Singh, 2021). In the context of yes-no bias, a model might
be biased towards either YES or NO responses to questions as
a result of the prevalence of affirmative or negative response-
based text seen during training.

To correct for potential Generic bias, we first calculate ‘no-
context” YES/NO LogProbs values, i.e., values of YES/NO
tokens following the beginning-of-sentence (BOS) token. 2
The no-context scores for both variants are then aggregated
across synonymous tokens (e.g., _Yes and Yes) using log-
sum-exp, and subtracted from the LogProbs of YES/NO for
each test question. These corrected values are then compared
to select the final response.

2EOS or PAD is used in case BOS is not available for the tested
model.

Method 2: Specific. The model may also exhibit a re-
sponse bias as a function of the dataset being presented. From
a yes-no bias perspective, the model’s internal representa-
tion of certain subject domains may skew more affirmative
or negative to the average, consequently affecting its accu-
racy. This is highly discussed in the case of controversial po-
litical domains such as racial and gender bias (Kaneko, Bol-
legala, Okazaki, & Baldwin, 2024; Kotek, Dockum, & Sun,
2023), but can also manifest among much more basic, general
knowledge questions (such as the ones in our yes-no question
datasets).

The Specific yes-no bias correction process involves split-
ting the question dataset into an 80%-20% train-test set. First,
the train set is run through the base inference process. The
means of the resulting LogProbs values are used to calculate
a bias correction term, c:

1 Nrain Mrain

() logp(YEs|Q;)— Y logp(No|Q)))
i=1

i=1

c=—
2 - Ryrain

Then, the test set is run through the model, and the bias cor-
rection term is applied to the set (added to YES questions and
subtracted from NO questions). The splitting and correction
is done in a k-fold manner (k = 5), and the model response
for a question is only recorded when it is part of the test set.

This correction approach operates on the expectation that
an unbiased model should yield approximately equal average
values for YES and NO on a class-balanced dataset.

Results

Model Families Show Variable Yes-No Bias

Figure 1 shows bias values on COMPS-YNQ and EWoK-
YNQ respectively, under both zero-shot no-prompting and
few-shot prompting evaluation setups. We find that mod-
els do exhibit yes-no bias, and that this bias can be charac-
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Figure 2: Specific bias correction strategy (x) results in lower bias and similar or higher accuracy relative to Base inference (e)
across both datasets (COMPS-YNQ and EWoK-YNQ) and evaluation types (zero-shot and few-shot). Bias values of -1 and +1
indicate pure ‘no-bias’ ‘yes-bias’ resp. Bias of 0 indicates unbiased behavior. Accuracy of 0.5 indicates chance performance.

terized at the model family level: all models within a fam-
ily show preference for the same choice (YES or NO) for
a given dataset and prompt setup. However, families as a
whole may show different biases depending on the dataset or
prompt setup. For an example of dataset-dependent behav-
ior, in zero-shot prompt cases, all model families show some
degree of yes-bias on COMPS-YNQ), but three of the model
families (MPT, Qwen and OLMo) flip to no-bias on EWoK-
YNQ (Fig. 1a base). For examples of prompt-dependent be-
havior, on COMPS-YNQ (Fig. 1a base), the MPT family ex-
hibits a slight yes-bias with zero-shot prompts, which flips to
no-bias with few-shot prompts (Fig. 1b base); the same be-
havior can be seen in the Falcon family on EWoK-YNQ. In
general, looking at base inference bias values, we observe that
models lean more towards yes-bias on COMPS-YNQ com-
pared to EWoK-YNQ in a zero-shot setting, but bias behavior

in a few-shot setting is similar for the two datasets.

Few-Shot Prompting Reduces Yes-No Bias

A comparison of base inference values between zero-shot and
few-shot inputs (i.e. Fig. 1a and 1b base) shows that few-shot
prompts result in lower bias values for three model families,
with MPT models being a consistent exception. These results
align with work from (Kaneko et al., 2024) which showed
that few-shot examples can help mitigate gender biases com-
pared to zero-shot prompting in LLMs. However, purely
instruction-based debiasing is generally inadequate due to its
induced instability, as noted by (Zhao et al., 2021) and (Ma
et al., 2023), which explains the MPT family exception here.
Additionally, the MPT models contain the lowest number of
parameters (6.7B) and training tokens (1T) compared to other
“7B’ models in our test set (7.3B/1.5T (Falcon3-Mamba),



7.7B/3T (Qwenl.5), and 7.3B/4T (OLMo)), and its behav-
ior here acts as potential supporting evidence for the claim
from (Hu & Frank, 2024) that the added task demand of un-
derstanding few-shot prompts is detrimental towards the rea-
soning capabilities of smaller LMs.

Instruction-Tuning Reduces Yes-No Bias

COMPS-YNQ EWoK-YNQ
Prompt Type - -
Mean Diff. | Cohen’s d | Mean Diff. | Cohen’s d
zero-shot —0.156 1.306 —0.040 0.291
few-shot —0.146 0.837 —0.166 0.736

Table 1: Mean difference in bias between pre-trained and
instruction-tuned LM pairs during base inference (without
bias correction). Cohen’s d > 0.8 indicates a large bias re-
duction effect size induced by instruction-tuning.

To determine the effects of instruction tuning on model re-
sponse bias, we compared instruction-tuned LMs and their
non-instruct counterparts. The pair-wise analysis in Table
1 shows that, on average, the instruction-tuned versions of
LMs are less biased for both datasets and prompt types. All
mean differences in bias between the corresponding model
pairings are negative, indicating consistent bias reduction in
instruction-tuned models. Cohen’s d is defined as the number
of standard deviations between the mean biases of instruct
and non-instruct models, with values higher than 0.8 indicat-
ing a strong effect of bias reduction. This result addition-
ally acts as support for work by (Aw, Montariol, AlIKhamissi,
Schrimpf, & Bosselut, 2024) who show that instruction-
tuning can improve world knowledge representations as well
as brain alignment in LLMs.

Efficacy of Bias Correction Methods

Prompt | Correction COMPS-YNQ EWoK-YNQ
Type Method | A% Bias | A% Acc. | A% Bias | A% Acc.

Generic —150.90 | —13.06 | —135.96 | —6.09

zero-shot
Specific —101.74 | +1.36 -90.57 |+2.12
Generic —55.83 | +2.13 —207.79 | —0.86

few-shot
Specific —-93.23 | +7.20 |-106.13 | +5.26

Table 2: Relative percentage difference of mean accuracy and
bias for both correction methods compared to base inference
values. For bias, a value near —100% indicates complete
elimination of bias (highlighted), < —100% indicates over-
correction towards the opposing response, and > —100% in-
dicates under-correction within the current response category.

Effect on Bias From the two described bias correction
strategies, Specific correction emerges as the more reliable
method to reduce yes-no bias. Figure 2 compares the model
performances between base inference and Specific correc-
tion on COMPS-YNQ and EWoK-YNQ. The dotted lines that

trace the accuracy and bias changes between the base infer-
ence and Specific methods show that the Specific correction
consistently brings the model bias close to 0.

On the other hand, Generic correction has mixed effects
on model bias. Table 2 reports the model performance re-
sulting from this correction. On applying the Generic correc-
tion, we observe cases of both drastic bias over-correction,
where the average model bias flips and doubles in magnitude
in EWoK-YNQ (few-shot), as well as under-correction where
only =~ 56% of the existing bias was mitigated on average
in the case of COMPS-YNQ (few-shot). In comparison, Spe-
cific correction is much more consistent and effective, with all
percentage differences close to —100% (highlighted in Table
2).

Effect on Accuracy Table 2 shows that the Specific method
has a small positive effect on overall model accuracy across
both datasets and prompt types. We see more substantial
accuracy improvements in individual model families, espe-
cially MPT with few-shot prompting (Figs. 2b and 2d) and
Falcon with zero-shot prompting (Figs. 2a and 2c). The
only exception where we observe an accuracy decrease is for
MPT on COMPS-YNQ with zero-shot prompting, although
it shows considerable accuracy increases in all other prompt-
dataset configurations. Interestingly, this is also the only case
where MPT shows a base yes-bias rather than a no-bias, fur-
ther showing model performance profiles” dependency on the
dataset and prompt-type.

The Generic method, in comparison, again shows mixed
effects for model accuracy. While family-wise accuracy ef-
fects of Generic correction are not reported in the figures, Ta-
ble 2 shows a small degradation in overall model accuracy
with zero-shot prompts (—13% and —6% on COMPS-YNQ
and EWoK-YNQ resp.), and even smaller effects with few-
shot prompts (+2% and —0.9% resp.).

Discussion

We present a comprehensive analysis of yes-no bias in lan-
guage models, revealing trends in bias behavior for popular
model families. We provide two yes-no question datasets,
COMPS-YNQ and EWoK-YNQ, aimed at evaluating per-
formance on context-free and context-dependent questions.
We describe two LogProbs-based bias correction methods, of
which the Specific correction presents a reliable method to
reduce yes-no bias while preserving accuracy. The Generic
correction method, though not as effective, has theoretically
justifiable roots, and presents a second example of using Log-
Probs values to assess and systematically manipulate model
response behavior for bias reduction. Based on the efficacy
of the Specific correction method, we believe that applying
this correction can be beneficial when probing LM internal
knowledge or general capabilities. Additionally, it not only
furthers de-biasing efforts in LMs, but also efforts in extract-
ing higher reasoning capabilities from smaller models, where
previous work (Hu & Frank, 2024) has shown that smaller
LMs possess reasoning that is masked due to the added load



of understanding the task itself.

The results of our study hold interesting implications for
understanding human response bias, specifically in how bias-
driving mechanisms differ between models and humans.

Firstly, we see that LM families exhibit a mixed yes-no bias
profile across datasets and prompt-types. Such behavior con-
trasts with the evidence of yes-bias in humans (Mehrani & Pe-
terson, 2017; Peterson et al., 1999, among others). However,
there also exists work to support the idea that LMs somewhat
align to human-like linguistic generalization (Hagendorff,
Fabi, & Kosinski, 2023; Hu, Mahowald, Lupyan, Ivanova,
& Levy, 2024; Jones, Trott, & Bergen, 2024) — one would
subsequently expect models to exhibit yes-bias, but this as-
pect of human response behavior does not transfer over to
models. We posit that this is because yes-bias in humans is
primarily a non-linguistic phenomenon; it is driven by higher-
level factors such as social conformity and desirability. LM
learning and reasoning, on the other hand, occurs purely at
the linguistic level, using word co-occurrence statistics (Kauf
et al., 2023). Although yes-bias manifests in language pat-
terns, its driving mechanisms are primarily non-linguistic in
nature. Our base inference results highlight the idea that some
human-like response behavior is difficult to model using the
quantitative linguistic techniques that constitute LM learning,
and these must be addressed before attempting to view LMs
as human-like reasoners.

Secondly, the efficacy of the Specific bias correction
method also tells us that the existing model bias — regardless
of its driving mechanism — is highly correctable by target-
ing dataset-driven response behavior. We find that models are
prone to dataset-specific bias, which in-fact parallels multiple
behavioral studies showing that humans exhibit strong, of-
ten detrimental domain-specific biases (Almandoz & Tilcsik,
2016; Asplund, Bjork, & Magnusson, 2022). Interestingly,
cognitive research shows that this human bias can also be mit-
igated by targeting domain-driven response behavior, such as
excluding domain experts in surveys (Asplund et al., 2022),
or adopting classical survey techniques such as the Delphi
method (Dalkey & Helmer, 1963) where feedback loops be-
tween experts and non-experts typically result in more accu-
rate consensus data. This leads us to posit that models are
sensitive to domain-specific bias in a similar manner to hu-
mans, but as discussed earlier, their underlying causes are
likely different, operating on linguistic and non-linguistic lev-
els respectively.

It is possible that even better bias reduction strategies
emerge in the future. Currently, the Generic correction
method suffers from aggressive over-correction tendencies,
and could become viable with the introduction of a weak-
ening effect before application. Additionally, there may
be multiple other LogProbs-based bias reduction strategies
that can be described using other theoretical justifications,
which would warrant testing and could be performed on these
datasets. Further analysis of yes-no bias using LMs with more
variation in size and architecture, intermediary prompt com-

plexities, and fine-tuning paradigms will help to refine the im-
plicative claims made here, along with strengthening our un-
derstanding of why some response behaviors seem to emerge
in both humans and models while others do not.

Conclusion

This paper takes a traditionally cognitive science problem —
the investigation of yes-bias in question-answering tasks —
and transfers it to LMs. In doing so, we (1) demonstrate that
LMs show bias when responding to yes-no questions, but that
bias is not humanlike, and (2) propose an effective bias cor-
rection method that enables a better assessment of underlying
LM knowledge, particularly for smaller and non-instruction-
tuned LMs.

Our findings highlight yes-bias as an example of bias that,
in humans, is likely driven by higher-level factors such as
social influences, and is not directly carried over into the
distributional properties of the input. In addition, we com-
prehensively evaluate LMs to show that a characteristic re-
sponse bias exists in many models, that it is dependent on
the model family, dataset, prompt complexity and instruction-
tuning, and that it can be corrected in a dataset-specific man-
ner. Thus, despite the fact that yes-no bias in LMs does not
follow a humanlike pattern, measuring and correcting for this
bias is an important step toward better evaluations of other
cognitive properties in LMs.
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